Unique Origin of Colors of Armchair Carbon Nanotubes
نویسندگان
چکیده
منابع مشابه
Unique origin of colors of armchair carbon nanotubes.
The colors of suspended metallic colloidal particles are determined by their size-dependent plasma resonance, while those of semiconducting colloidal particles are determined by their size-dependent band gap. Here, we present a novel case for armchair carbon nanotubes, suspended in aqueous medium, for which the color depends on their size-dependent excitonic resonance, even though the individua...
متن کاملinvestigation of the electronic properties of carbon and iii-v nanotubes
boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...
15 صفحه اولFundamental optical processes in armchair carbon nanotubes.
Single-wall carbon nanotubes provide ideal model one-dimensional (1-D) condensed matter systems in which to address fundamental questions in many-body physics, while, at the same time, they are leading candidates for building blocks in nanoscale optoelectronic circuits. Much attention has been recently paid to their optical properties, arising from 1-D excitons and phonons, which have been reve...
متن کامل4 Radial solitons in armchair carbon nanotubes
Radial solitons are investigated in armchair carbon nanotubes using a generalized Lennard-Jones potential. The radial solitons are found in terms of moving kink defects whose velocity obeys a dispersion relation. Effects of lattice discreteness on the shape of kink defects are examined by estimating the Peierls stress. Results suggest that the typical size for an unpinned kink phase is of the o...
متن کاملElectronic excitations of double-walled armchair carbon nanotubes
The low-frequency electronic excitations in double-walled armchair carbon nanotubes are studied within the random-phase approximation. The intertube atomic overlaps significantly affect the low-energy bands and thus enrich the low-frequency single-particle excitations and collective excitations. They induce more plasmon modes, reduce the plasmon strength, and change acoustic plasmons into optic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Chemical Society
سال: 2012
ISSN: 0002-7863,1520-5126
DOI: 10.1021/ja209333m